ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.01718
14
10

Curious Meta-Controller: Adaptive Alternation between Model-Based and Model-Free Control in Deep Reinforcement Learning

5 May 2019
Muhammad Burhan Hafez
C. Weber
Matthias Kerzel
S. Wermter
ArXivPDFHTML
Abstract

Recent success in deep reinforcement learning for continuous control has been dominated by model-free approaches which, unlike model-based approaches, do not suffer from representational limitations in making assumptions about the world dynamics and model errors inevitable in complex domains. However, they require a lot of experiences compared to model-based approaches that are typically more sample-efficient. We propose to combine the benefits of the two approaches by presenting an integrated approach called Curious Meta-Controller. Our approach alternates adaptively between model-based and model-free control using a curiosity feedback based on the learning progress of a neural model of the dynamics in a learned latent space. We demonstrate that our approach can significantly improve the sample efficiency and achieve near-optimal performance on learning robotic reaching and grasping tasks from raw-pixel input in both dense and sparse reward settings.

View on arXiv
Comments on this paper