ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.02313
11
64

Optimal Convergence Rate of Hamiltonian Monte Carlo for Strongly Logconcave Distributions

7 May 2019
Zongchen Chen
Santosh Vempala
ArXivPDFHTML
Abstract

We study Hamiltonian Monte Carlo (HMC) for sampling from a strongly logconcave density proportional to e−fe^{-f}e−f where f:Rd→Rf:\mathbb{R}^d \to \mathbb{R}f:Rd→R is μ\muμ-strongly convex and LLL-smooth (the condition number is κ=L/μ\kappa = L/\muκ=L/μ). We show that the relaxation time (inverse of the spectral gap) of ideal HMC is O(κ)O(\kappa)O(κ), improving on the previous best bound of O(κ1.5)O(\kappa^{1.5})O(κ1.5); we complement this with an example where the relaxation time is Ω(κ)\Omega(\kappa)Ω(κ). When implemented using a nearly optimal ODE solver, HMC returns an ε\varepsilonε-approximate point in 222-Wasserstein distance using O~((κd)0.5ε−1)\widetilde{O}((\kappa d)^{0.5} \varepsilon^{-1})O((κd)0.5ε−1) gradient evaluations per step and O~((κd)1.5ε−1)\widetilde{O}((\kappa d)^{1.5}\varepsilon^{-1})O((κd)1.5ε−1) total time.

View on arXiv
Comments on this paper