ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.03703
42
23

Learning fashion compatibility across apparel categories for outfit recommendation

1 May 2019
Luisa F. Polanía
Satyajit Gupte
ArXiv (abs)PDFHTML
Abstract

This paper addresses the problem of generating recommendations for completing the outfit given that a user is interested in a particular apparel item. The proposed method is based on a siamese network used for feature extraction followed by a fully-connected network used for learning a fashion compatibility metric. The embeddings generated by the siamese network are augmented with color histogram features motivated by the important role that color plays in determining fashion compatibility. The training of the network is formulated as a maximum a posteriori (MAP) problem where Laplacian distributions are assumed for the filters of the siamese network to promote sparsity and matrix-variate normal distributions are assumed for the weights of the metric network to efficiently exploit correlations between the input units of each fully-connected layer.

View on arXiv
Comments on this paper