ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.05538
13
10

Assessing the Difficulty of Classifying ConceptNet Relations in a Multi-Label Classification Setting

14 May 2019
Maria Becker
Michael Staniek
Vivi Nastase
Anette Frank
ArXivPDFHTML
Abstract

Commonsense knowledge relations are crucial for advanced NLU tasks. We examine the learnability of such relations as represented in CONCEPTNET, taking into account their specific properties, which can make relation classification difficult: a given concept pair can be linked by multiple relation types, and relations can have multi-word arguments of diverse semantic types. We explore a neural open world multi-label classification approach that focuses on the evaluation of classification accuracy for individual relations. Based on an in-depth study of the specific properties of the CONCEPTNET resource, we investigate the impact of different relation representations and model variations. Our analysis reveals that the complexity of argument types and relation ambiguity are the most important challenges to address. We design a customized evaluation method to address the incompleteness of the resource that can be expanded in future work.

View on arXiv
Comments on this paper