ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.06319
54
60
v1v2v3 (latest)

Exact Hard Monotonic Attention for Character-Level Transduction

15 May 2019
Shijie Wu
Ryan Cotterell
ArXiv (abs)PDFHTMLGithub (75★)
Abstract

Many common character-level, string-to string transduction tasks, e.g., grapheme-tophoneme conversion and morphological inflection, consist almost exclusively of monotonic transductions. However, neural sequence-to sequence models that use non-monotonic soft attention often outperform popular monotonic models. In this work, we ask the following question: Is monotonicity really a helpful inductive bias for these tasks? We develop a hard attention sequence-to-sequence model that enforces strict monotonicity and learns a latent alignment jointly while learning to transduce. With the help of dynamic programming, we are able to compute the exact marginalization over all monotonic alignments. Our models achieve state-of-the-art performance on morphological inflection. Furthermore, we find strong performance on two other character-level transduction tasks. Code is available at https://github.com/shijie-wu/neural-transducer.

View on arXiv
Comments on this paper