ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.06424
18
127

Meta reinforcement learning as task inference

15 May 2019
Jan Humplik
Alexandre Galashov
Leonard Hasenclever
Pedro A. Ortega
Yee Whye Teh
N. Heess
    OffRL
ArXivPDFHTML
Abstract

Humans achieve efficient learning by relying on prior knowledge about the structure of naturally occurring tasks. There is considerable interest in designing reinforcement learning (RL) algorithms with similar properties. This includes proposals to learn the learning algorithm itself, an idea also known as meta learning. One formal interpretation of this idea is as a partially observable multi-task RL problem in which task information is hidden from the agent. Such unknown task problems can be reduced to Markov decision processes (MDPs) by augmenting an agent's observations with an estimate of the belief about the task based on past experience. However estimating the belief state is intractable in most partially-observed MDPs. We propose a method that separately learns the policy and the task belief by taking advantage of various kinds of privileged information. Our approach can be very effective at solving standard meta-RL environments, as well as a complex continuous control environment with sparse rewards and requiring long-term memory.

View on arXiv
Comments on this paper