ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.07665
12
0

Knowledge Transferring via Model Aggregation for Online Social Care

19 May 2019
Shaoxiong Ji
Guodong Long
Shirui Pan
Tianqing Zhu
Jing Jiang
Sen Wang
Xue Li
ArXivPDFHTML
Abstract

The Internet and the Web are being increasingly used in proactive social care to provide people, especially the vulnerable, with a better life and services, and their derived social services generate enormous data. However, the strict protection of privacy makes user's data become an isolated island and limits the predictive performance of standalone clients. To enable effective proactive social care and knowledge sharing within intelligent agents, this paper develops a knowledge transferring framework via model aggregation. Under this framework, distributed clients perform on-device training, and a third-party server integrates multiple clients' models and redistributes to clients for knowledge transferring among users. To improve the generalizability of the knowledge sharing, we further propose a novel model aggregation algorithm, namely the average difference descent aggregation (AvgDiffAgg for short). In particular, to evaluate the effectiveness of the learning algorithm, we use a case study on the early detection and prevention of suicidal ideation, and the experiment results on four datasets derived from social communities demonstrate the effectiveness of the proposed learning method.

View on arXiv
Comments on this paper