ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.07880
39
60
v1v2v3 (latest)

Independent Vector Analysis with more Microphones than Sources

20 May 2019
Robin Scheibler
Nobutaka Ono
ArXiv (abs)PDFHTML
Abstract

We extend frequency-domain blind source separation based on independent vector analysis to the case where there are more microphones than sources. The signal is modelled as non-Gaussian sources in a Gaussian background. The proposed algorithm is based on a parametrization of the demixing matrix decreasing the number of parameters to estimate. Furthermore, orthogonal constraints between the signal and background subspaces are imposed to regularize the separation. The problem can then be posed as a constrained likelihood maximization. We propose efficient alternating updates guaranteed to converge to a stationary point of the cost function. The performance of the algorithm is assessed on simulated signals. We find that the separation performance is on par with that of the conventional determined algorithm at a fraction of the computational cost.

View on arXiv
Comments on this paper