ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.08850
11
0

Time-Smoothed Gradients for Online Forecasting

21 May 2019
Tianhao Zhu
Sergul Aydore
    AI4TS
ArXivPDFHTML
Abstract

Here, we study different update rules in stochastic gradient descent (SGD) for online forecasting problems. The selection of the learning rate parameter is critical in SGD. However, it may not be feasible to tune this parameter in online learning. Therefore, it is necessary to have an update rule that is not sensitive to the selection of the learning parameter. Inspired by the local regret metric that we introduced previously, we propose to use time-smoothed gradients within SGD update. Using the public data set-- GEFCom2014, we validate that our approach yields more stable results than the other existing approaches. Furthermore, we show that such a simple approach is computationally efficient compared to the alternatives.

View on arXiv
Comments on this paper