17
5

Fast Algorithms for Computational Optimal Transport and Wasserstein Barycenter

Abstract

We provide theoretical complexity analysis for new algorithms to compute the optimal transport (OT) distance between two discrete probability distributions, and demonstrate their favorable practical performance over state-of-art primal-dual algorithms and their capability in solving other problems in large-scale, such as the Wasserstein barycenter problem for multiple probability distributions. First, we introduce the \emph{accelerated primal-dual randomized coordinate descent} (APDRCD) algorithm for computing the OT distance. We provide its complexity upper bound \bigOtil(n5/2ε)\bigOtil(\frac{n^{5/2}}{\varepsilon}) where nn stands for the number of atoms of these probability measures and ε>0\varepsilon > 0 is the desired accuracy. This complexity bound matches the best known complexities of primal-dual algorithms for the OT problems, including the adaptive primal-dual accelerated gradient descent (APDAGD) and the adaptive primal-dual accelerated mirror descent (APDAMD) algorithms. Then, we demonstrate the better performance of the APDRCD algorithm over the APDAGD and APDAMD algorithms through extensive experimental studies, and further improve its practical performance by proposing a greedy version of it, which we refer to as \emph{accelerated primal-dual greedy coordinate descent} (APDGCD). Finally, we generalize the APDRCD and APDGCD algorithms to distributed algorithms for computing the Wasserstein barycenter for multiple probability distributions.

View on arXiv
Comments on this paper