ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.10862
62
28
v1v2v3v4 (latest)

Automatic Discovery of Privacy-Utility Pareto Fronts

26 May 2019
Brendan Avent
Javier I. González
Tom Diethe
Andrei Paleyes
Borja Balle
    FedML
ArXiv (abs)PDFHTML
Abstract

Differential privacy is a mathematical framework for privacy-preserving data analysis. Changing the hyperparameters of a differentially private algorithm allows one to trade off privacy and utility in a principled way. Quantifying this trade-off in advance is essential to decision-makers tasked with deciding how much privacy can be provided in a particular application while maintaining acceptable utility. Analytical utility guarantees offer a rigorous tool to reason about this trade-off, but are generally only available for relatively simple problems. For more complex tasks, such as training neural networks under differential privacy, the utility achieved by a given algorithm can only be measured empirically. This paper presents a Bayesian optimization methodology for efficiently characterizing the privacy--utility trade-off of any differentially private algorithm using only empirical measurements of its utility. The versatility of our method is illustrated on a number of machine learning tasks involving multiple models, optimizers, and datasets.

View on arXiv
Comments on this paper