81
4

Repeated A/B Testing

Abstract

A/B testing is of central importance in the industry, especially in the technology sector where companies run long sequences of A/B tests to optimize their products. Since the space of potential innovations is typically vast, the experimenter must make quick and good decisions without wasting too much time on a single A/B test in the sequence. In particular, discarding an innovation with a small benefit might be better in the long run than using many samples to precisely determine its value. In this work, we introduce a performance measure that captures this idea and design an efficient algorithm that performs almost as well as the best A/B strategy in a given set. As it turns out, a key technical difficulty that significantly affects the learning rates is the hardness of obtaining unbiased estimates of the strategy rewards.

View on arXiv
Comments on this paper