ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.12511
62
18
v1v2 (latest)

Calibrated Surrogate Maximization of Linear-fractional Utility in Binary Classification

29 May 2019
Han Bao
Masashi Sugiyama
ArXiv (abs)PDFHTML
Abstract

Complex classification performance metrics such as the Fβ{}_\betaβ​-measure and Jaccard index are often used, in order to handle class-imbalanced cases such as information retrieval and image segmentation. These performance metrics are not decomposable, that is, they cannot be expressed in a per-example manner, which hinders a straightforward application of M-estimation widely used in supervised learning. In this paper, we consider linear-fractional metrics, which are a family of classification performance metrics that encompasses many standard ones such as the Fβ{}_\betaβ​-measure and Jaccard index, and propose methods to directly maximize performances under those metrics. A clue to tackle their direct optimization is a calibrated surrogate utility, which is a tractable lower bound of the true utility function representing a given metric. We characterize sufficient conditions which make the surrogate maximization coincide with the maximization of the true utility. Simulation results on benchmark datasets validate the effectiveness of our calibrated surrogate maximization especially if the sample sizes are extremely small.

View on arXiv
Comments on this paper