ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.12665
6
15

Graph Learning Network: A Structure Learning Algorithm

29 May 2019
Darwin Danilo Saire Pilco
Adín Ramirez Rivera
    GNN
ArXivPDFHTML
Abstract

Recently, graph neural networks (GNNs) have proved to be suitable in tasks on unstructured data. Particularly in tasks as community detection, node classification, and link prediction. However, most GNN models still operate with static relationships. We propose the Graph Learning Network (GLN), a simple yet effective process to learn node embeddings and structure prediction functions. Our model uses graph convolutions to propose expected node features, and predict the best structure based on them. We repeat these steps recursively to enhance the prediction and the embeddings.

View on arXiv
Comments on this paper