ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.12726
26
44

Prioritized Sequence Experience Replay

25 May 2019
Marc Brittain
J. R. Bertram
Xuxi Yang
Peng Wei
ArXivPDFHTML
Abstract

Experience replay is widely used in deep reinforcement learning algorithms and allows agents to remember and learn from experiences from the past. In an effort to learn more efficiently, researchers proposed prioritized experience replay (PER) which samples important transitions more frequently. In this paper, we propose Prioritized Sequence Experience Replay (PSER) a framework for prioritizing sequences of experience in an attempt to both learn more efficiently and to obtain better performance. We compare the performance of PER and PSER sampling techniques in a tabular Q-learning environment and in DQN on the Atari 2600 benchmark. We prove theoretically that PSER is guaranteed to converge faster than PER and empirically show PSER substantially improves upon PER.

View on arXiv
Comments on this paper