ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.12729
14
18

Zeroth-Order Stochastic Alternating Direction Method of Multipliers for Nonconvex Nonsmooth Optimization

29 May 2019
Feihu Huang
Shangqian Gao
Songcan Chen
Heng-Chiao Huang
ArXivPDFHTML
Abstract

Alternating direction method of multipliers (ADMM) is a popular optimization tool for the composite and constrained problems in machine learning. However, in many machine learning problems such as black-box attacks and bandit feedback, ADMM could fail because the explicit gradients of these problems are difficult or infeasible to obtain. Zeroth-order (gradient-free) methods can effectively solve these problems due to that the objective function values are only required in the optimization. Recently, though there exist a few zeroth-order ADMM methods, they build on the convexity of objective function. Clearly, these existing zeroth-order methods are limited in many applications. In the paper, thus, we propose a class of fast zeroth-order stochastic ADMM methods (i.e., ZO-SVRG-ADMM and ZO-SAGA-ADMM) for solving nonconvex problems with multiple nonsmooth penalties, based on the coordinate smoothing gradient estimator. Moreover, we prove that both the ZO-SVRG-ADMM and ZO-SAGA-ADMM have convergence rate of O(1/T)O(1/T)O(1/T), where TTT denotes the number of iterations. In particular, our methods not only reach the best convergence rate O(1/T)O(1/T)O(1/T) for the nonconvex optimization, but also are able to effectively solve many complex machine learning problems with multiple regularized penalties and constraints. Finally, we conduct the experiments of black-box binary classification and structured adversarial attack on black-box deep neural network to validate the efficiency of our algorithms.

View on arXiv
Comments on this paper