87

Wasserstein Style Transfer

International Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Abstract

We propose Gaussian optimal transport for Image style transfer in an Encoder/Decoder framework. Optimal transport for Gaussian measures has closed forms Monge mappings from source to target distributions. Moreover interpolates between a content and a style image can be seen as geodesics in the Wasserstein Geometry. Using this insight, we show how to mix different target styles , using Wasserstein barycenter of Gaussian measures. Since Gaussians are closed under Wasserstein barycenter, this allows us a simple style transfer and style mixing and interpolation. Moreover we show how mixing different styles can be achieved using other geodesic metrics between gaussians such as the Fisher Rao metric, while the transport of the content to the new interpolate style is still performed with Gaussian OT maps. Our simple methodology allows to generate new stylized content interpolating between many artistic styles. The metric used in the interpolation results in different stylizations.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.