ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.13339
20
6

Multitask Text-to-Visual Embedding with Titles and Clickthrough Data

30 May 2019
Pranav Aggarwal
Zhe-nan Lin
Baldo Faieta
Saeid Motiian
ArXivPDFHTML
Abstract

Text-visual (or called semantic-visual) embedding is a central problem in vision-language research. It typically involves mapping of an image and a text description to a common feature space through a CNN image encoder and a RNN language encoder. In this paper, we propose a new method for learning text-visual embedding using both image titles and click-through data from an image search engine. We also propose a new triplet loss function by modeling positive awareness of the embedding, and introduce a novel mini-batch-based hard negative sampling approach for better data efficiency in the learning process. Experimental results show that our proposed method outperforms existing methods, and is also effective for real-world text-to-visual retrieval.

View on arXiv
Comments on this paper