ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.13728
22
43

Pre-Training Graph Neural Networks for Generic Structural Feature Extraction

31 May 2019
Ziniu Hu
Changjun Fan
Ting-Li Chen
Kai-Wei Chang
Yizhou Sun
ArXivPDFHTML
Abstract

Graph neural networks (GNNs) are shown to be successful in modeling applications with graph structures. However, training an accurate GNN model requires a large collection of labeled data and expressive features, which might be inaccessible for some applications. To tackle this problem, we propose a pre-training framework that captures generic graph structural information that is transferable across tasks. Our framework can leverage the following three tasks: 1) denoising link reconstruction, 2) centrality score ranking, and 3) cluster preserving. The pre-training procedure can be conducted purely on the synthetic graphs, and the pre-trained GNN is then adapted for downstream applications. With the proposed pre-training procedure, the generic structural information is learned and preserved, thus the pre-trained GNN requires less amount of labeled data and fewer domain-specific features to achieve high performance on different downstream tasks. Comprehensive experiments demonstrate that our proposed framework can significantly enhance the performance of various tasks at the level of node, link, and graph.

View on arXiv
Comments on this paper