ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.00311
30
26
v1v2 (latest)

Smoothing Structured Decomposable Circuits

1 June 2019
Andy Shih
Guy Van den Broeck
P. Beame
Antoine Amarilli
    TPM
ArXiv (abs)PDFHTML
Abstract

We study the task of smoothing a circuit, i.e., ensuring that all children of a plus-gate mention the same variables. Circuits serve as the building blocks of state-of-the-art inference algorithms on discrete probabilistic graphical models and probabilistic programs. They are also important for discrete density estimation algorithms. Many of these tasks require the input circuit to be smooth. However, smoothing has not been studied in its own right yet, and only a trivial quadratic algorithm is known. This paper studies efficient smoothing for structured decomposable circuits. We propose a near-linear time algorithm for this task and explore lower bounds for smoothing general circuits, using existing results on range-sum queries. Further, for the important special case of All-Marginals, we show a more efficient linear-time algorithm. We validate experimentally the performance of our methods.

View on arXiv
Comments on this paper