ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.00376
20
74

Domain Adaptation of Neural Machine Translation by Lexicon Induction

2 June 2019
Junjie Hu
Mengzhou Xia
Graham Neubig
J. Carbonell
ArXivPDFHTML
Abstract

It has been previously noted that neural machine translation (NMT) is very sensitive to domain shift. In this paper, we argue that this is a dual effect of the highly lexicalized nature of NMT, resulting in failure for sentences with large numbers of unknown words, and lack of supervision for domain-specific words. To remedy this problem, we propose an unsupervised adaptation method which fine-tunes a pre-trained out-of-domain NMT model using a pseudo-in-domain corpus. Specifically, we perform lexicon induction to extract an in-domain lexicon, and construct a pseudo-parallel in-domain corpus by performing word-for-word back-translation of monolingual in-domain target sentences. In five domains over twenty pairwise adaptation settings and two model architectures, our method achieves consistent improvements without using any in-domain parallel sentences, improving up to 14 BLEU over unadapted models, and up to 2 BLEU over strong back-translation baselines.

View on arXiv
Comments on this paper