ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.00668
17
83

A Closed-form Solution to Universal Style Transfer

3 June 2019
Ming Lu
Hao Zhao
Anbang Yao
Yurong Chen
F. Xu
Li Zhang
    OOD
ArXivPDFHTML
Abstract

Universal style transfer tries to explicitly minimize the losses in feature space, thus it does not require training on any pre-defined styles. It usually uses different layers of VGG network as the encoders and trains several decoders to invert the features into images. Therefore, the effect of style transfer is achieved by feature transform. Although plenty of methods have been proposed, a theoretical analysis of feature transform is still missing. In this paper, we first propose a novel interpretation by treating it as the optimal transport problem. Then, we demonstrate the relations of our formulation with former works like Adaptive Instance Normalization (AdaIN) and Whitening and Coloring Transform (WCT). Finally, we derive a closed-form solution named Optimal Style Transfer (OST) under our formulation by additionally considering the content loss of Gatys. Comparatively, our solution can preserve better structure and achieve visually pleasing results. It is simple yet effective and we demonstrate its advantages both quantitatively and qualitatively. Besides, we hope our theoretical analysis can inspire future works in neural style transfer. Code is available at https://github.com/lu-m13/OptimalStyleTransfer.

View on arXiv
Comments on this paper