ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.01926
11
29

A Resource-Free Evaluation Metric for Cross-Lingual Word Embeddings Based on Graph Modularity

5 June 2019
Yoshinari Fujinuma
Jordan L. Boyd-Graber
Michael J. Paul
ArXivPDFHTML
Abstract

Cross-lingual word embeddings encode the meaning of words from different languages into a shared low-dimensional space. An important requirement for many downstream tasks is that word similarity should be independent of language - i.e., word vectors within one language should not be more similar to each other than to words in another language. We measure this characteristic using modularity, a network measurement that measures the strength of clusters in a graph. Modularity has a moderate to strong correlation with three downstream tasks, even though modularity is based only on the structure of embeddings and does not require any external resources. We show through experiments that modularity can serve as an intrinsic validation metric to improve unsupervised cross-lingual word embeddings, particularly on distant language pairs in low-resource settings.

View on arXiv
Comments on this paper