ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02312
11
14

Risk-Sensitive Compact Decision Trees for Autonomous Execution in Presence of Simulated Market Response

5 June 2019
Svitlana Vyetrenko
Shaojie Xu
ArXivPDFHTML
Abstract

We demonstrate an application of risk-sensitive reinforcement learning to optimizing execution in limit order book markets. We represent taking order execution decisions based on limit order book knowledge by a Markov Decision Process; and train a trading agent in a market simulator, which emulates multi-agent interaction by synthesizing market response to our agent's execution decisions from historical data. Due to market impact, executing high volume orders can incur significant cost. We learn trading signals from market microstructure in presence of simulated market response and derive explainable decision-tree-based execution policies using risk-sensitive Q-learning to minimize execution cost subject to constraints on cost variance.

View on arXiv
Comments on this paper