ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02829
11
122

Towards Scalable and Reliable Capsule Networks for Challenging NLP Applications

6 June 2019
Wei-Ye Zhao
Haiyun Peng
Steffen Eger
Erik Cambria
Min Yang
    GNN
ArXivPDFHTML
Abstract

Obstacles hindering the development of capsule networks for challenging NLP applications include poor scalability to large output spaces and less reliable routing processes. In this paper, we introduce: 1) an agreement score to evaluate the performance of routing processes at instance level; 2) an adaptive optimizer to enhance the reliability of routing; 3) capsule compression and partial routing to improve the scalability of capsule networks. We validate our approach on two NLP tasks, namely: multi-label text classification and question answering. Experimental results show that our approach considerably improves over strong competitors on both tasks. In addition, we gain the best results in low-resource settings with few training instances.

View on arXiv
Comments on this paper