ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02919
19
92

EVDodgeNet: Deep Dynamic Obstacle Dodging with Event Cameras

7 June 2019
N. Sanket
Chethan Parameshwara
Chahat Deep Singh
Ashwin V. Kuruttukulam
Cornelia Fermuller
Davide Scaramuzza
Yiannis Aloimonos
ArXivPDFHTML
Abstract

Dynamic obstacle avoidance on quadrotors requires low latency. A class of sensors that are particularly suitable for such scenarios are event cameras. In this paper, we present a deep learning -- based solution for dodging multiple dynamic obstacles on a quadrotor with a single event camera and on-board computation. Our approach uses a series of shallow neural networks for estimating both the ego-motion and the motion of independently moving objects. The networks are trained in simulation and directly transfer to the real world without any fine-tuning or retraining. We successfully evaluate and demonstrate the proposed approach in many real-world experiments with obstacles of different shapes and sizes, achieving an overall success rate of 70% including objects of unknown shape and a low light testing scenario. To our knowledge, this is the first deep learning -- based solution to the problem of dynamic obstacle avoidance using event cameras on a quadrotor. Finally, we also extend our work to the pursuit task by merely reversing the control policy, proving that our navigation stack can cater to different scenarios.

View on arXiv
Comments on this paper