ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.03944
12
100

Solving Electrical Impedance Tomography with Deep Learning

6 June 2019
Yuwei Fan
Lexing Ying
ArXivPDFHTML
Abstract

This paper introduces a new approach for solving electrical impedance tomography (EIT) problems using deep neural networks. The mathematical problem of EIT is to invert the electrical conductivity from the Dirichlet-to-Neumann (DtN) map. Both the forward map from the electrical conductivity to the DtN map and the inverse map are high-dimensional and nonlinear. Motivated by the linear perturbative analysis of the forward map and based on a numerically low-rank property, we propose compact neural network architectures for the forward and inverse maps for both 2D and 3D problems. Numerical results demonstrate the efficiency of the proposed neural networks.

View on arXiv
Comments on this paper