ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.05247
94
55
v1v2v3 (latest)

Bootstrapping Upper Confidence Bound

12 June 2019
Botao Hao
Yasin Abbasi-Yadkori
Zheng Wen
Guang Cheng
ArXiv (abs)PDFHTML
Abstract

Upper Confidence Bound (UCB) method is arguably the most celebrated one used in online decision making with partial information feedback. Existing techniques for constructing confidence bounds are typically built upon various concentration inequalities, which thus lead to over-exploration. In this paper, we propose a non-parametric and data-dependent UCB algorithm based on the multiplier bootstrap. To improve its finite sample performance, we further incorporate second-order correction into the above construction. In theory, we derive both problem-dependent and problem-independent regret bounds for multi-armed bandits under a much weaker tail assumption than the standard sub-Gaussianity. Numerical results demonstrate significant regret reductions by our method, in comparison with several baselines in a range of multi-armed and linear bandit problems.

View on arXiv
Comments on this paper