ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.06792
35
16

Floors are Flat: Leveraging Semantics for Real-Time Surface Normal Prediction

16 June 2019
Steven Hickson
Karthik Raveendran
Alireza Fathi
Kevin Patrick Murphy
Irfan Essa
ArXivPDFHTML
Abstract

We propose 4 insights that help to significantly improve the performance of deep learning models that predict surface normals and semantic labels from a single RGB image. These insights are: (1) denoise the "ground truth" surface normals in the training set to ensure consistency with the semantic labels; (2) concurrently train on a mix of real and synthetic data, instead of pretraining on synthetic and finetuning on real; (3) jointly predict normals and semantics using a shared model, but only backpropagate errors on pixels that have valid training labels; (4) slim down the model and use grayscale instead of color inputs. Despite the simplicity of these steps, we demonstrate consistently improved results on several datasets, using a model that runs at 12 fps on a standard mobile phone.

View on arXiv
Comments on this paper