ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.09012
69
46
v1v2v3 (latest)

Learning as the Unsupervised Alignment of Conceptual Systems

21 June 2019
Brett D. Roads
Bradley C. Love
    OCL
ArXiv (abs)PDFHTML
Abstract

Concept induction requires the extraction and naming of concepts from noisy perceptual experience. For supervised approaches, as the number of concepts grows, so does the number of required training examples. Philosophers, psychologists, and computer scientists, have long recognized that children can learn to label objects without being explicitly taught. In a series of computational experiments, we highlight how information in the environment can be used to build and align conceptual systems. Unlike supervised learning, the learning problem becomes easier the more concepts and systems there are to master. The key insight is that each concept has a unique signature within one conceptual system (e.g., images) that is recapitulated in other systems (e.g., text or audio). As predicted, children's early concepts form readily aligned systems.

View on arXiv
Comments on this paper