ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.09602
6
13

Ego-CNN: Distributed, Egocentric Representations of Graphs for Detecting Critical Structures

23 June 2019
Ruo-Chun Tzeng
Shan-Hung Wu
    GNN
ArXivPDFHTML
Abstract

We study the problem of detecting critical structures using a graph embedding model. Existing graph embedding models lack the ability to precisely detect critical structures that are specific to a task at the global scale. In this paper, we propose a novel graph embedding model, called the Ego-CNNs, that employs the ego-convolutions convolutions at each layer and stacks up layers using an ego-centric way to detects precise critical structures efficiently. An Ego-CNN can be jointly trained with a task model and help explain/discover knowledge for the task. We conduct extensive experiments and the results show that Ego-CNNs (1) can lead to comparable task performance as the state-of-the-art graph embedding models, (2) works nicely with CNN visualization techniques to illustrate the detected structures, and (3) is efficient and can incorporate with scale-free priors, which commonly occurs in social network datasets, to further improve the training efficiency.

View on arXiv
Comments on this paper