ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.10101
33
0

LMVP: Video Predictor with Leaked Motion Information

24 June 2019
Dong Wang
Yitong Li
Wei Cao
Liqun Chen
Qinglai Wei
Lawrence Carin
ArXiv (abs)PDFHTML
Abstract

We propose a Leaked Motion Video Predictor (LMVP) to predict future frames by capturing the spatial and temporal dependencies from given inputs. The motion is modeled by a newly proposed component, motion guider, which plays the role of both learner and teacher. Specifically, it {\em learns} the temporal features from real data and {\em guides} the generator to predict future frames. The spatial consistency in video is modeled by an adaptive filtering network. To further ensure the spatio-temporal consistency of the prediction, a discriminator is also adopted to distinguish the real and generated frames. Further, the discriminator leaks information to the motion guider and the generator to help the learning of motion. The proposed LMVP can effectively learn the static and temporal features in videos without the need for human labeling. Experiments on synthetic and real data demonstrate that LMVP can yield state-of-the-art results.

View on arXiv
Comments on this paper