ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.10225
122
153
v1v2v3v4v5v6v7v8v9 (latest)

Compound Probabilistic Context-Free Grammars for Grammar Induction

24 June 2019
Yoon Kim
Chris Dyer
Alexander M. Rush
ArXiv (abs)PDFHTML
Abstract

We study a formalization of the grammar induction problem that models sentences as being generated by a compound probabilistic context-free grammar. In contrast to traditional formulations which learn a single stochastic grammar, our context-free rule probabilities are modulated by a per-sentence continuous latent variable, which induces marginal dependencies beyond the traditional context-free assumptions. Inference in this grammar is performed by collapsed variational inference, in which an amortized variational posterior is placed on the continuous variable, and the latent trees are marginalized with dynamic programming. Experiments on English and Chinese show the effectiveness of our approach compared to recent state-of-the-art methods for grammar induction from words with neural language models.

View on arXiv
Comments on this paper