ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.10575
13
3
v1v2 (latest)

Parallel Performance of Algebraic Multigrid Domain Decomposition (AMG-DD)

25 June 2019
Wayne Mitchell
R. Strzodka
Robert D. Falgout
ArXiv (abs)PDFHTML
Abstract

Algebraic multigrid (AMG) is a widely used scalable solver and preconditioner for large-scale linear systems resulting from the discretization of a wide class of elliptic PDEs. While AMG has optimal computational complexity, the cost of communication has become a significant bottleneck that limits its scalability as processor counts continue to grow on modern machines. This paper examines the design, implementation, and parallel performance of a novel algorithm, Algebraic Multigrid Domain Decomposition (AMG-DD), designed specifically to limit communication. The goal of AMG-DD is to provide a low-communication alternative to standard AMG V-cycles by trading some additional computational overhead for a significant reduction in communication cost. Numerical results show that AMG-DD achieves superior accuracy per communication cost compared to AMG, and speedup over AMG is demonstrated on a large GPU cluster.

View on arXiv
Comments on this paper