ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.11335
116
4

Enhancing temporal segmentation by nonlocal self-similarity

14 June 2019
Mariella Dimiccoli
H. Wendt
    AI4TS
ArXiv (abs)PDFHTML
Abstract

Temporal segmentation of untrimmed videos and photo-streams is currently an active area of research in computer vision and image processing. This paper proposes a new approach to improve the temporal segmentation of photo-streams. The method consists in enhancing image representations by encoding long-range temporal dependencies. Our key contribution is to take advantage of the temporal stationarity assumption of photostreams for modeling each frame by its nonlocal self-similarity function. The proposed approach is put to test on the EDUB-Seg dataset, a standard benchmark for egocentric photostream temporal segmentation. Starting from seven different (CNN based) image features, the method yields consistent improvements in event segmentation quality, leading to an average increase of F-measure of 3.71% with respect to the state of the art.

View on arXiv
Comments on this paper