ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.00300
13
15

Signed Laplacian Deep Learning with Adversarial Augmentation for Improved Mammography Diagnosis

30 June 2019
Heyi Li
Dongdong Chen
W. Nailon
Mike E. Davies
Dave Laurenson
    MedIm
ArXivPDFHTML
Abstract

Computer-aided breast cancer diagnosis in mammography is limited by inadequate data and the similarity between benign and cancerous masses. To address this, we propose a signed graph regularized deep neural network with adversarial augmentation, named \textsc{DiagNet}. Firstly, we use adversarial learning to generate positive and negative mass-contained mammograms for each mass class. After that, a signed similarity graph is built upon the expanded data to further highlight the discrimination. Finally, a deep convolutional neural network is trained by jointly optimizing the signed graph regularization and classification loss. Experiments show that the \textsc{DiagNet} framework outperforms the state-of-the-art in breast mass diagnosis in mammography.

View on arXiv
Comments on this paper