ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.00313
12
22

Multi-Armed Bandits with Fairness Constraints for Distributing Resources to Human Teammates

30 June 2019
Houston Claure
Yifang Chen
Jignesh Modi
Malte Jung
S. Nikolaidis
ArXivPDFHTML
Abstract

How should a robot that collaborates with multiple people decide upon the distribution of resources (e.g. social attention, or parts needed for an assembly)? People are uniquely attuned to how resources are distributed. A decision to distribute more resources to one team member than another might be perceived as unfair with potentially detrimental effects for trust. We introduce a multi-armed bandit algorithm with fairness constraints, where a robot distributes resources to human teammates of different skill levels. In this problem, the robot does not know the skill level of each human teammate, but learns it by observing their performance over time. We define fairness as a constraint on the minimum rate that each human teammate is selected throughout the task. We provide theoretical guarantees on performance and perform a large-scale user study, where we adjust the level of fairness in our algorithm. Results show that fairness in resource distribution has a significant effect on users' trust in the system.

View on arXiv
Comments on this paper