ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.01644
21
2

A Neural Attention Model for Adaptive Learning of Social Friends' Preferences

29 June 2019
Dimitrios Rafailidis
Gerhard Weiss
    GNN
    FedML
ArXivPDFHTML
Abstract

Social-based recommendation systems exploit the selections of friends to combat the data sparsity on user preferences, and improve the recommendation accuracy of the collaborative filtering strategy. The main challenge is to capture and weigh friends' preferences, as in practice they do necessarily match. In this paper, we propose a Neural Attention mechanism for Social collaborative filtering, namely NAS. We design a neural architecture, to carefully compute the non-linearity in friends' preferences by taking into account the social latent effects of friends on user behavior. In addition, we introduce a social behavioral attention mechanism to adaptively weigh the influence of friends on user preferences and consequently generate accurate recommendations. Our experiments on publicly available datasets demonstrate the effectiveness of the proposed NAS model over other state-of-the-art methods. Furthermore, we study the effect of the proposed social behavioral attention mechanism and show that it is a key factor to our model's performance.

View on arXiv
Comments on this paper