ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.02447
234
18
v1v2v3v4 (latest)

The Debiased Spatial Whittle Likelihood

Journal of The Royal Statistical Society Series B-statistical Methodology (JRSSB), 2019
4 July 2019
Arthur Guillaumin
A. Sykulski
S. Olhede
F. Simons
ArXiv (abs)PDFHTML
Abstract

We provide a computationally and statistically efficient method for estimating the parameters of a stochastic Gaussian model observed on a regular spatial grid in any number of dimensions. Our proposed method, which we call the debiased spatial Whittle likelihood, makes important corrections to the well-known Whittle likelihood to account for large sources of bias caused by boundary effects and aliasing. We generalise the approach to flexibly allow for significant volumes of missing data, for the usage of irregular sampling schemes including those with lower-dimensional substructure, and for irregular sampling boundaries. We build a theoretical framework under relatively weak assumptions which ensures consistency and asymptotic normality in numerous practical settings. We provide detailed implementation guidelines which ensure the estimation procedure can still be conducted in O(nlog⁡n)\mathcal{O}(n\log n)O(nlogn) operations, where nnn is the number of points of the encapsulating rectangular grid, thus keeping the computational scalability of Fourier and Whittle-based methods for large data sets. We validate our procedure over a range of simulated and real world settings, and compare with state-of-the-art alternatives, demonstrating the enduring significant practical appeal of Fourier-based methods, provided they are corrected by the constructive procedures developed in this paper.

View on arXiv
Comments on this paper