ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.02636
27
25
v1v2 (latest)

Collecting Indicators of Compromise from Unstructured Text of Cybersecurity Articles using Neural-Based Sequence Labelling

4 July 2019
Zi Long
Lianzhi Tan
Shengping Zhou
Chaoyang He
Xin Liu
ArXiv (abs)PDFHTML
Abstract

Indicators of Compromise (IOCs) are artifacts observed on a network or in an operating system that can be utilized to indicate a computer intrusion and detect cyber-attacks in an early stage. Thus, they exert an important role in the field of cybersecurity. However, state-of-the-art IOCs detection systems rely heavily on hand-crafted features with expert knowledge of cybersecurity, and require large-scale manually annotated corpora to train an IOC classifier. In this paper, we propose using an end-to-end neural-based sequence labelling model to identify IOCs automatically from cybersecurity articles without expert knowledge of cybersecurity. By using a multi-head self-attention module and contextual features, we find that the proposed model is capable of gathering contextual information from texts of cybersecurity articles and performs better in the task of IOC identification. Experiments show that the proposed model outperforms other sequence labelling models, achieving the average F1-score of 89.0% on English cybersecurity article test set, and approximately the average F1-score of 81.8% on Chinese test set.

View on arXiv
Comments on this paper