ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.03191
37
12
v1v2v3 (latest)

TEAGS: Time-aware Text Embedding Approach to Generate Subgraphs

6 July 2019
Saeid Hosseini
Saeed Najafipour
Ngai-Man Cheung
Hongzhi Yin
M. Kangavari
Xiaofang Zhou
ArXiv (abs)PDFHTML
Abstract

Contagions (e.g. virus, gossip) spread over the nodes in propagation graphs. We can use the temporal and textual data of the nodes to compute the edge weights and then generate subgraphs with highly relevant nodes. This is beneficial to many applications. Yet, challenges abound. First, the propagation pattern between each pair of nodes may change by time. Second, not always the same contagion propagates. Hence, the state-of-the-art text mining approaches including topic-modeling cannot effectively compute the edge weights. Third, since the propagation is affected by time, the word-word co-occurrence patterns may differ in various temporal dimensions, that can decrease the effectiveness of word embedding approaches. We argue that multi-aspect temporal dimensions (hour, day, etc) should be considered to better calculate the correlation weights between the nodes. In this work, we devise a novel framework that on the one hand, integrates a neural network based time-aware word embedding component to construct the word vectors through multiple temporal facets, and on the other hand, uses a temporal generative model to compute the weights. Subsequently, we propose a Max-Heap Graph cutting algorithm to generate subgraphs. We validate our model through comprehensive experiments on real-world datasets. The results show that our model can retrieve the subgraphs more effective than other rivals and the temporal dynamics should be noticed both in word embedding and propagation processes.

View on arXiv
Comments on this paper