ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.03491
6
150

Searching for Effective Neural Extractive Summarization: What Works and What's Next

8 July 2019
Ming Zhong
Pengfei Liu
Danqing Wang
Xipeng Qiu
Xuanjing Huang
    AI4TS
ArXivPDFHTML
Abstract

The recent years have seen remarkable success in the use of deep neural networks on text summarization. However, there is no clear understanding of \textit{why} they perform so well, or \textit{how} they might be improved. In this paper, we seek to better understand how neural extractive summarization systems could benefit from different types of model architectures, transferable knowledge and learning schemas. Additionally, we find an effective way to improve current frameworks and achieve the state-of-the-art result on CNN/DailyMail by a large margin based on our observations and analyses. Hopefully, our work could provide more clues for future research on extractive summarization.

View on arXiv
Comments on this paper