ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.03809
41
43
v1v2v3v4v5 (latest)

Competing Models

8 July 2019
J. M. Olea
Pietro Ortoleva
Mallesh M. Pai
A. Prat
ArXiv (abs)PDFHTML
Abstract

Different agents need to make a prediction. They observe identical data, but have different models: they predict using different explanatory variables. We study which agent believes they have the best predictive ability -- as measured by the smallest subjective posterior mean squared prediction error -- and show how it depends on the sample size. With small samples, we present results suggesting it is an agent using a low-dimensional model. With large samples, it is generally an agent with a high-dimensional model, possibly including irrelevant variables, but never excluding relevant ones. We apply our results to characterize the winning model in an auction of productive assets, to argue that entrepreneurs and investors with simple models will be over-represented in new sectors, and to understand the proliferation of "factors" that explain the cross-sectional variation of expected stock returns in the asset-pricing literature.

View on arXiv
Comments on this paper