ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.04004
42
7
v1v2v3 (latest)

Incremental Intervention Effects in Studies with Dropout and Many Timepoints

9 July 2019
Kwangho Kim
Edward H. Kennedy
A. Naimi
ArXiv (abs)PDFHTML
Abstract

Modern longitudinal studies collect feature data at many timepoints, often of the same order of sample size. Such studies are typically affected by {dropout} and positivity violations. We tackle these problems by generalizing effects of recent incremental interventions (which shift propensity scores rather than set treatment values deterministically) to accommodate multiple outcomes and subject dropout. We give an identifying expression for incremental intervention effects when dropout is conditionally ignorable (without requiring treatment positivity), and derive the nonparametric efficiency bound for estimating such effects. Then we present efficient nonparametric estimators, showing that they converge at fast parametric rates and yield uniform inferential guarantees, even when nuisance functions are estimated flexibly at slower rates. We also study the variance ratio of incremental intervention effects relative to more conventional deterministic effects in a novel infinite time horizon setting, where the number of timepoints can grow with sample size, and show that incremental intervention effects yield near-exponential gains in statistical precision in this setup. Finally we conclude with simulations and apply our methods in a study of the effect of low-dose aspirin on pregnancy outcomes.

View on arXiv
Comments on this paper