ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.04637
11
2

Multi-Person tracking by multi-scale detection in Basketball scenarios

10 July 2019
Adrià Arbués Sangüesa
G. Haro
C. Ballester
ArXivPDFHTML
Abstract

Tracking data is a powerful tool for basketball teams in order to extract advanced semantic information and statistics that might lead to a performance boost. However, multi-person tracking is a challenging task to solve in single-camera video sequences, given the frequent occlusions and cluttering that occur in a restricted scenario. In this paper, a novel multi-scale detection method is presented, which is later used to extract geometric and content features, resulting in a multi-person video tracking system. Having built a dataset from scratch together with its ground truth (more than 10k bounding boxes), standard metrics are evaluated, obtaining notable results both in terms of detection (F1-score) and tracking (MOTA). The presented system could be used as a source of data gathering in order to extract useful statistics and semantic analyses a posteriori.

View on arXiv
Comments on this paper