ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.07374
25
1412

A Survey on Explainable Artificial Intelligence (XAI): Towards Medical XAI

17 July 2019
Erico Tjoa
Cuntai Guan
    XAI
ArXivPDFHTML
Abstract

Recently, artificial intelligence and machine learning in general have demonstrated remarkable performances in many tasks, from image processing to natural language processing, especially with the advent of deep learning. Along with research progress, they have encroached upon many different fields and disciplines. Some of them require high level of accountability and thus transparency, for example the medical sector. Explanations for machine decisions and predictions are thus needed to justify their reliability. This requires greater interpretability, which often means we need to understand the mechanism underlying the algorithms. Unfortunately, the blackbox nature of the deep learning is still unresolved, and many machine decisions are still poorly understood. We provide a review on interpretabilities suggested by different research works and categorize them. The different categories show different dimensions in interpretability research, from approaches that provide "obviously" interpretable information to the studies of complex patterns. By applying the same categorization to interpretability in medical research, it is hoped that (1) clinicians and practitioners can subsequently approach these methods with caution, (2) insights into interpretability will be born with more considerations for medical practices, and (3) initiatives to push forward data-based, mathematically- and technically-grounded medical education are encouraged.

View on arXiv
Comments on this paper