ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.08175
12
40

On the Evaluation of Conditional GANs

11 July 2019
Terrance Devries
Adriana Romero
Luis Villaseñor-Pineda
Graham W. Taylor
M. Drozdzal
    EGVM
ArXivPDFHTML
Abstract

Conditional Generative Adversarial Networks (cGANs) are finding increasingly widespread use in many application domains. Despite outstanding progress, quantitative evaluation of such models often involves multiple distinct metrics to assess different desirable properties, such as image quality, conditional consistency, and intra-conditioning diversity. In this setting, model benchmarking becomes a challenge, as each metric may indicate a different "best" model. In this paper, we propose the Frechet Joint Distance (FJD), which is defined as the Frechet distance between joint distributions of images and conditioning, allowing it to implicitly capture the aforementioned properties in a single metric. We conduct proof-of-concept experiments on a controllable synthetic dataset, which consistently highlight the benefits of FJD when compared to currently established metrics. Moreover, we use the newly introduced metric to compare existing cGAN-based models for a variety of conditioning modalities (e.g. class labels, object masks, bounding boxes, images, and text captions). We show that FJD can be used as a promising single metric for cGAN benchmarking and model selection. Code can be found at https://github.com/facebookresearch/fjd.

View on arXiv
Comments on this paper