ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.08410
39
2
v1v2v3v4 (latest)

Geometric Rates of Convergence for Kernel-based Sampling Algorithms

19 July 2019
Rajiv Khanna
Liam Hodgkinson
Michael W. Mahoney
ArXiv (abs)PDFHTML
Abstract

The rate of convergence of weighted kernel herding (WKH) and sequential Bayesian quadrature (SBQ), two kernel-based sampling algorithms for estimating integrals with respect to some target probability measure, is investigated. Under verifiable conditions on the chosen kernel and target measure, we establish a near-geometric rate of convergence for target measures that are nearly atomic. Furthermore, we show these algorithms perform comparably to the theoretical best possible sampling algorithm under the maximum mean discrepancy. An analysis is also conducted in a distributed setting. Our theoretical developments are supported by empirical observations on simulated data as well as a real world application.

View on arXiv
Comments on this paper