ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.08566
31
9
v1v2v3 (latest)

Clustering Higher Order Data: An Application to Pediatric Multi-variable Longitudinal Data

19 July 2019
Peter A. Tait
P. McNicholas
Joyce Obeid
ArXiv (abs)PDFHTML
Abstract

Physical activity levels are an important predictor of cardiovascular health and increasingly being measured by sensors, like accelerometers. Accelerometers produce rich multivariate data that can inform important clinical decisions related to individual patients and public health. The CHAMPION study, a study of youth with chronic inflammatory conditions, aims to determine the links between heart health, inflammation, physical activity, and fitness. The accelerometer data from CHAMPION is represented as 4-dimensional arrays, and a finite mixture of multidimensional arrays model is developed for clustering. The use of model-based clustering for multidimensional arrays has thus far been limited to two-dimensional arrays, i.e., matrices or order-two tensors, and the work in this paper can also be seen as an approach for clustering D-dimensional arrays for D > 2 or, in other words, for clustering order-D tensors.

View on arXiv
Comments on this paper