ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.08731
46
12
v1v2 (latest)

Overlapping community detection in networks based on link partitioning and partitioning around medoids

20 July 2019
Alexander Ponomarenko
L. Pitsoulis
Marat Shamshetdinov
ArXiv (abs)PDFHTML
Abstract

In this paper, we present a new method for detecting overlapping communities in networks with a predefined number of clusters called LPAM (Link Partitioning Around Medoids). The overlapping communities in the graph are obtained by detecting the disjoint communities in the associated line graph employing link partitioning and partitioning around medoids which are done through the use of a distance function defined on the set of nodes. We consider both the commute distance and amplified commute distance as distance functions. The performance of the LPAM method is evaluated with computational experiments on real life instances, as well as synthetic network benchmarks. For small and medium-size networks, the exact solution was found, while for large networks we found solutions with a heuristic version of the LPAM method.

View on arXiv
Comments on this paper